Exercise 3

In Exercises 1 through 4, take the indented contour in Fig. 101 (Sec. 82).
Use the function

$$
f(z)=\frac{z^{1 / 3} \log z}{z^{2}+1}=\frac{e^{(1 / 3) \log z} \log z}{z^{2}+1} \quad\left(|z|>0,-\frac{\pi}{2}<\arg z<\frac{3 \pi}{2}\right)
$$

to derive this pair of integration formulas:

$$
\int_{0}^{\infty} \frac{\sqrt[3]{x} \ln x}{x^{2}+1} d x=\frac{\pi^{2}}{6}, \quad \int_{0}^{\infty} \frac{\sqrt[3]{x}}{x^{2}+1} d x=\frac{\pi}{\sqrt{3}}
$$

Solution

In order to evaluate these integrals, consider the given function in the complex plane and the contour in Fig. 101. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
z^{2}+1=0 \\
z= \pm i
\end{gathered}
$$

The singular point of interest to us is the one that lies within the closed contour, $z=i . z^{1 / 3}$ can be written in terms of the logarithm function as

$$
z^{1 / 3}=\exp \left(\frac{1}{3} \log z\right)
$$

so a branch cut for the function has to be chosen. For convenience, we choose it to be the axis of negative imaginary numbers.

$$
\begin{aligned}
z^{1 / 3} & =\exp \left[\frac{1}{3}(\ln r+i \theta)\right], \quad\left(|z|>0,-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}\right) \\
& =r^{1 / 3} e^{i \theta / 3}
\end{aligned}
$$

where $r=|z|$ is the magnitude of z and $\theta=\arg z$ is the argument of z. According to Cauchy's residue theorem, the integral of $z^{1 / 3} \log z /\left(z^{2}+1\right)$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{z^{1 / 3} \log z}{z^{2}+1} d z=2 \pi i \underset{z=i}{\operatorname{Res}} \frac{z^{1 / 3} \log z}{z^{2}+1}
$$

This closed loop integral is the sum of four integrals, one over each arc in the loop.

$$
\int_{L_{1}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z+\int_{L_{2}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z+\int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z=2 \pi i \operatorname{Res}_{z=i} \frac{z^{1 / 3} \log z}{z^{2}+1}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{llll}
L_{1}: & z=r e^{i 0}, & r=\rho & \rightarrow \\
L_{2}: & z=r e^{i \pi}, & r=R \quad \rightarrow \quad r=\rho \\
C_{\rho}: & z=\rho e^{i \theta}, & \theta=\pi \quad \rightarrow \quad \theta=0 \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\pi
\end{array}
$$

Figure 1: This is Fig. 101 with the singularity at $z=i$ marked. The squiggly line represents the branch cut $(|z|>0,-\pi / 2<\theta<3 \pi / 2)$.

As a result,

$$
\begin{aligned}
2 \pi i \underset{z=i}{\operatorname{Res}} \frac{z^{1 / 3} \log z}{z^{2}+1} & =\int_{\rho}^{R} \frac{\left(r e^{i 0}\right)^{1 / 3} \log \left(r e^{i 0}\right)}{\left(r e^{i 0}\right)^{2}+1}\left(d r e^{i 0}\right)+\int_{R}^{\rho} \frac{\left(r e^{i \pi}\right)^{1 / 3} \log \left(r e^{i \pi}\right)}{\left(r e^{i \pi}\right)^{2}+1}\left(d r e^{i \pi}\right)+\int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z \\
& =\int_{\rho}^{R} \frac{r^{1 / 3}(\ln r+i 0)}{r^{2}+1} d r+\int_{R} \frac{r^{1 / 3} e^{i \pi / 3}(\ln r+i \pi)}{(-r)^{2}+1}(-d r)+\int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z \\
& =\int_{\rho}^{R} \frac{r^{1 / 3} \log z}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d r+\int_{\rho}^{R} \frac{r^{1 / 3} e^{i \pi / 3}(\ln r+i \pi)}{r^{2}+1} d r+\int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z \\
& =\int_{\rho}^{R} \frac{r^{1 / 3} \ln r\left(1+e^{i \pi / 3}\right)}{r^{2}+1} d r+i \pi e^{i \pi / 3} \int_{\rho}^{R} \frac{r^{1 / 3}}{r^{2}+1} d r+\int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z \\
& =\left(1+e^{i \pi / 3}\right) \int_{\rho}^{R} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+i \pi e^{i \pi / 3} \int_{\rho}^{R} \frac{r^{1 / 3}}{r^{2}+1} d r+\int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z+\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z
\end{aligned}
$$

Take the limit now as $\rho \rightarrow 0$ and $R \rightarrow \infty$. The integral over C_{ρ} tends to zero, and the integral over C_{R} tends to zero. Proof for these statements will be given at the end.

$$
\left(1+e^{i \pi / 3}\right) \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+i \pi e^{i \pi / 3} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r=2 \pi i \underset{z=i}{\operatorname{Res}} \frac{z^{1 / 3} \log z}{z^{2}+1}
$$

The denominator can be written as $z^{2}+1=(z+i)(z-i)$. From this we see that the multiplicity of the factor $z-i$ is 1 . The residue at $z=i$ can then be calculated by

$$
\operatorname{Res}_{z=i} \frac{z^{1 / 3} \log z}{z^{2}+1}=\phi(i),
$$

where $\phi(z)$ is the same function as $f(z)$ without $(z-i)$.

$$
\phi(z)=\frac{z^{1 / 3} \log z}{z+i} \Rightarrow \phi(i)=\frac{i^{1 / 3} \log i}{2 i}=\frac{\left(e^{i \pi / 2}\right)^{1 / 3}\left(\ln 1+i \frac{\pi}{2}\right)}{2 i}=\frac{\pi}{4} e^{i \pi / 6}
$$

So then

$$
\underset{z=i}{\operatorname{Res}} \frac{z^{1 / 3} \log z}{z^{2}+1}=\frac{\pi}{4} e^{i \pi / 6} .
$$

and

$$
\begin{aligned}
\left(1+e^{i \pi / 3}\right) \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+i \pi e^{i \pi / 3} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r & =2 \pi i\left(\frac{\pi}{4} e^{i \pi / 6}\right) \\
& =i \frac{\pi^{2}}{2} e^{i \pi / 6} .
\end{aligned}
$$

Use Euler's formula to separate the real and imaginary parts of the exponential functions.

$$
\begin{array}{r}
\left(1+\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+i \pi\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r=i \frac{\pi^{2}}{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
\left(1+\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+i \pi\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r=i \frac{\pi^{2}}{2}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right) \\
\frac{3}{2} \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r-\frac{\pi \sqrt{3}}{2} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r+i\left(\frac{\sqrt{3}}{2} \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+\frac{\pi}{2} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r\right)=-\frac{\pi^{2}}{4}+i \frac{\pi^{2} \sqrt{3}}{4}
\end{array}
$$

Match the real and imaginary parts of both sides to obtain a system of two equations.

$$
\begin{align*}
& \frac{3}{2} \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r-\frac{\pi \sqrt{3}}{2} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r=-\frac{\pi^{2}}{4} \tag{1}\\
& \frac{\sqrt{3}}{2} \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+\frac{\pi}{2} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r=\frac{\pi^{2} \sqrt{3}}{4} \tag{2}
\end{align*}
$$

Multiply both sides of equation (2) by $\sqrt{3}$ and then add the two equations to eliminate the integral without $\ln r$.

$$
\begin{gathered}
\frac{3}{2} \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r+\frac{3}{2} \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r=-\frac{\pi^{2}}{4}+\frac{3 \pi^{2}}{4} \\
3 \int_{0}^{\infty} \frac{r^{1 / 3} \ln r}{r^{2}+1} d r=\frac{\pi^{2}}{2}
\end{gathered}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{\sqrt[3]{x} \ln x}{x^{2}+1} d x=\frac{\pi^{2}}{6}
$$

Substitute this result into equation (1) and solve for the other integral.
$\frac{3}{2}\left(\frac{\pi^{2}}{6}\right)-\frac{\pi \sqrt{3}}{2} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r=-\frac{\pi^{2}}{4} \quad \rightarrow \quad-\frac{\pi \sqrt{3}}{2} \int_{0}^{\infty} \frac{r^{1 / 3}}{r^{2}+1} d r=-\frac{\pi^{2}}{2} \quad \rightarrow \quad \int_{0}^{\infty} \frac{\sqrt[3]{x}}{x^{2}+1} d x=\frac{\pi}{\sqrt{3}}$

The Integral Over C_{ρ}

Our aim here is to show that the integral over C_{ρ} tends to zero in the limit as $\rho \rightarrow 0$. The parameterization of the small semicircular arc in Fig. 101 is $z=\rho e^{i \theta}$, where θ goes from π to 0 .

$$
\begin{aligned}
\int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z & =\int_{\pi}^{0} \frac{\left(\rho e^{i \theta}\right)^{1 / 3} \log \left(\rho e^{i \theta}\right)}{\left(\rho e^{i \theta}\right)^{2}+1}\left(\rho i e^{i \theta} d \theta\right) \\
& =\int_{\pi}^{0} \frac{\rho^{1 / 3} e^{i \theta / 3}(\ln \rho+i \theta)}{\rho^{2} e^{2 i \theta}+1}\left(\rho i e^{i \theta} d \theta\right) \\
& =\int_{\pi}^{0} \frac{\rho^{4 / 3} \ln \rho\left(1+\frac{i \theta}{\ln \rho}\right)}{\rho^{2} e^{2 i \theta}+1}\left(i e^{4 i \theta / 3} d \theta\right)
\end{aligned}
$$

In the limit as $\rho \rightarrow 0$, we have

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z=\lim _{\rho \rightarrow 0} \int_{\pi}^{0} \frac{\rho^{4 / 3} \ln \rho\left(1+\frac{i \theta}{\ln \rho}\right)}{\rho^{2} e^{2 i \theta}+1}\left(i e^{4 i \theta / 3} d \theta\right)
$$

Because the limits of integration are constant, the limit may be brought inside the integral.

$$
\begin{aligned}
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z & =\int_{\pi}^{0} \lim _{\rho \rightarrow 0} \frac{\rho^{4 / 3} \ln \rho\left(1+\frac{i \theta}{\ln \rho}\right)}{\rho^{2} e^{2 i \theta}+1}\left(i e^{4 i \theta / 3} d \theta\right) \\
& =\int_{\pi}^{0}\left[\lim _{\rho \rightarrow 0} \rho^{4 / 3} \ln \rho\right]\left[\lim _{\rho \rightarrow 0} \frac{1+\frac{i \theta}{\ln \rho}}{\rho^{2} e^{2 i \theta}+1}\right]\left(i e^{4 i \theta / 3} d \theta\right) \\
& =\int_{\pi}^{0}\left[\lim _{\rho \rightarrow 0} \frac{\ln \rho}{\rho^{-4 / 3}}\right][1]\left(i e^{4 i \theta / 3} d \theta\right)
\end{aligned}
$$

Plugging $\rho=0$ in the remaining limit results in the indeterminate form ∞ / ∞, so l'Hôpital's rule will be applied to calculate it.

$$
\begin{aligned}
& \frac{\infty}{\stackrel{\infty}{\mathrm{H}}} \int_{\pi}^{0}\left[\lim _{\rho \rightarrow 0} \frac{\frac{1}{\rho}}{-\frac{4}{3} \rho^{-7 / 3}}\right]\left(i e^{4 i \theta / 3} d \theta\right) \\
& =\int_{\pi}^{0}\left[-\frac{3}{4} \lim _{\rho \rightarrow 0} \rho^{4 / 3}\right]\left(i e^{4 i \theta / 3} d \theta\right) \\
& =0
\end{aligned}
$$

Therefore,

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z=0
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the large semicircular arc in Fig. 101 is $z=R e^{i \theta}$, where θ goes from 0 to π.

$$
\begin{aligned}
\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z & =\int_{0}^{\pi} \frac{\left(R e^{i \theta}\right)^{1 / 3} \log \left(R e^{i \theta}\right)}{\left(R e^{i \theta}\right)^{2}+1}\left(R i e^{i \theta} d \theta\right) \\
& =\int_{0}^{\pi} \frac{R^{4 / 3} e^{4 i \theta / 3}(\ln R+i \theta)}{R^{2} e^{2 i \theta}+1}(i d \theta)
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{aligned}
&\left|\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z\right|=\left|\int_{0}^{\pi} \frac{R^{4 / 3} e^{4 i \theta / 3}(\ln R+i \theta)}{R^{2} e^{2 i \theta}+1}(i d \theta)\right| \\
& \leq \int_{0}^{\pi}\left|\frac{R^{4 / 3} e^{4 i \theta / 3}(\ln R+i \theta)}{R^{2} e^{2 i \theta}+1}(i)\right| d \theta \\
&=\int_{0}^{\pi} \frac{\left|R^{4 / 3} e^{4 i \theta / 3}(\ln R+i \theta)\right|}{\left|R^{2} e^{2 i \theta}+1\right|}|i| d \theta \\
&=\int_{0}^{\pi} \frac{R^{4 / 3}|\ln R+i \theta|}{\left|R^{2} e^{2 i \theta}+1\right|} d \theta \\
& \leq \int_{0}^{\pi} \frac{R^{4 / 3}(|\ln R|+|i \theta|)}{\left|R^{2} e^{2 i \theta}\right|-|1|} d \theta \\
&=\int_{0}^{\pi} \frac{R^{4 / 3}(\ln R+\theta)}{R^{2}-1} d \theta \\
&=\int_{0}^{\pi} \frac{R^{4 / 3} \ln R\left(1+\frac{\theta}{\ln R}\right)}{R^{2}\left(1-\frac{1}{R^{2}}\right)} d \theta
\end{aligned}
$$

So we have

$$
\left|\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z\right| \leq \int_{0}^{\pi} \frac{\ln R\left(1+\frac{\theta}{\ln R}\right)}{R^{2 / 3}\left(1-\frac{1}{R^{2}}\right)} d \theta
$$

Take the limit of both sides as $R \rightarrow \infty$.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z\right| \leq \lim _{R \rightarrow \infty} \int_{0}^{\pi} \frac{\ln R\left(1+\frac{\theta}{\ln R}\right)}{R^{2 / 3}\left(1-\frac{1}{R^{2}}\right)} d \theta
$$

Because the limits of integration are constant, the limit may be brought inside the integral.

$$
\begin{aligned}
& \lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z\right| \leq \int_{0}^{\pi} \lim _{R \rightarrow \infty} \frac{\ln R\left(1+\frac{\theta}{\ln R}\right)}{R^{2 / 3}\left(1-\frac{1}{R^{2}}\right)} d \theta \\
&=\int_{0}^{\pi}\left[\lim _{R \rightarrow \infty} \frac{\ln R}{R^{2 / 3}}\right]\left[\lim _{R \rightarrow \infty} \frac{1+\frac{\theta}{\ln R}}{1-\frac{1}{R^{2}}}\right] d \theta
\end{aligned}
$$

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z\right| \leq \int_{0}^{\pi}\left[\lim _{R \rightarrow \infty} \frac{\ln R}{R^{2 / 3}}\right][1] d \theta
$$

The remaining limit is the indeterminate form ∞ / ∞, so l'Hôpital's rule will be applied to calculate it.

$$
\begin{aligned}
& \frac{\stackrel{\infty}{\infty}}{\stackrel{\mathrm{H}}{=}} \int_{0}^{\pi}\left[\lim _{R \rightarrow \infty} \frac{\frac{1}{R}}{\frac{2}{3} R^{-1 / 3}}\right] d \theta \\
& =\int_{0}^{\pi}\left[\frac{3}{2} \lim _{R \rightarrow \infty} \frac{1}{R^{2 / 3}}\right] d \theta \\
& =0
\end{aligned}
$$

So we have

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z\right| \leq 0
$$

The magnitude of a number cannot be negative.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z\right|=0
$$

The only number that has a magnitude of zero is zero. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{1 / 3} \log z}{z^{2}+1} d z=0
$$

